Wavelet: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 59: | Line 59: | ||
[[File:py_sin_wavelet.png|400px|||pyspedas spectrogram example]] | [[File:py_sin_wavelet.png|400px|||pyspedas spectrogram example]] | ||
With a small change | With a small change to the python code we can use a different wavelet, for example the Gaussian Derivative wavelet. | ||
<pre> | <pre> |
Latest revision as of 18:00, 3 May 2020
Compare IDL code to python code for the wavelet transformation of a simple wave function.
IDL code: SPEDAS
The SPEDAS IDL code uses Complex Morlet wavelets internally, and computes the resulting power.
; Create a tplot variable that contains a wave. t = FINDGEN(4000) time = time_double('2010-01-01') + 10*t data = sin(2*!pi*t/32.) data2 = sin(2*!pi*t/64.) data[1000:3000] = data2[1000:3000] var = 'sin_wav' store_data, var, data={x:time, y:data} ; Apply wavelet transformation. wav_data, var ; Plot the wave and the result of the transformation. pvar = 'sin_wav_wv_pow' tplot, [var, pvar]
Python code: pySPEDAS
Similar code in python uses the pywavelets library. This example uses the Complex Morlet wavelets.
import numpy as np import pytplot from pyspedas import time_float from pyspedas.analysis.wavelet import wavelet # Create a tplot variable that contains a wave. t = np.arange(4000.) y = np.sin(2*np.pi*t/32.) y2 = np.sin(2*np.pi*t/64.) y[1000:3000] = y2[1000:3000] var = 'sin_wav' time = time_float('2010-01-01') + 10*t pytplot.store_data(var, data={'x':time, 'y':y}) # Complex Morlet wavelets transformation. powervar = wavelet(var, wavename='cmorl0.5-1.0') pvar = powervar[0] # Define plotting parameters and plot. pytplot.options(pvar, 'colormap', 'jet') pytplot.ylim(pvar, 0.001, 0.1) pytplot.options(pvar, 'ylog', True) pytplot.options(pvar, 'ytitle', pvar) pytplot.tplot([var, pvar])
With a small change to the python code we can use a different wavelet, for example the Gaussian Derivative wavelet.
import numpy as np import pytplot from pyspedas import time_float from pyspedas.analysis.wavelet import wavelet # Create a tplot variable that contains a wave. t = np.arange(4000.) y = np.sin(2*np.pi*t/32.) y2 = np.sin(2*np.pi*t/64.) y[1000:3000] = y2[1000:3000] var = 'sin_wav' time = time_float('2010-01-01') + 10*t pytplot.store_data(var, data={'x':time, 'y':y}) # Gaussian Derivative wavelets transformation. powervar = wavelet(var, wavename='gaus1') pvar = powervar[0] # Define plotting parameters and plot. pytplot.options(pvar, 'colormap', 'jet') pytplot.ylim(pvar, 0.001, 0.1) pytplot.options(pvar, 'ylog', True) pytplot.options(pvar, 'ytitle', pvar) pytplot.tplot([var, pvar])