Wavelet
Compare IDL code to python code for the wavelet transformation of a simple wave function.
IDL code: SPEDAS
The SPEDAS IDL code uses Complex Morlet wavelets internally and computes the resulting power.
t = FINDGEN(4000)
time = time_double('2010-01-01') + 10*t
data = sin(2*!pi*t/32.)
data2 = sin(2*!pi*t/64.)
data[1000:3000] = data2[1000:3000]
var = 'sin_wav'
store_data, var, data={x:time, y:data}
pvar = 'sin_wav_wv_pow'
wav_data, var
tplot, [var, pvar]
Python code: pySPEDAS
Similar code in python uses the pywavelets library. This example uses the Complex Morlet wavelets.
import numpy as np
import pytplot
import pyspedas
from pyspedas.analysis.wavelet import wavelet
t = np.arange(4000.)
y = np.sin(2*np.pi*t/32.)
y2 = np.sin(2*np.pi*t/64.)
y[1000:3000] = y2[1000:3000]
var = 'sin_wav'
time = pyspedas.time_float('2010-01-01') + 10*t
pytplot.store_data(var, data={'x':time, 'y':y})
# Complex Morlet wavelets transformation
powervar = wavelet(var, wavename='cmorl0.5-1.0')
pvar = powervar[0]
pytplot.tplot_names()
pytplot.options(pvar, 'colormap', 'jet')
pytplot.ylim(pvar, 0.001, 0.1)
pytplot.options(pvar, 'ylog', True)
pytplot.options(pvar, 'ytitle', pvar)
pytplot.tplot([var, pvar])
With a small change, we can use a different wavelet, for example the Gaussian Derivative wavelet.
import numpy as np
import pytplot
import pyspedas
from pyspedas.analysis.wavelet import wavelet
t = np.arange(4000.)
y = np.sin(2*np.pi*t/32.)
y2 = np.sin(2*np.pi*t/64.)
y[1000:3000] = y2[1000:3000]
var = 'sin_wav'
time = pyspedas.time_float('2010-01-01') + 10*t
pytplot.store_data(var, data={'x':time, 'y':y})
# Gaussian Derivative wavelets transformation
powervar = wavelet(var, wavename='gaus1')
pvar = powervar[0]
pytplot.tplot_names()
pytplot.options(pvar, 'colormap', 'jet')
pytplot.ylim(pvar, 0.001, 0.1)
pytplot.options(pvar, 'ylog', True)
pytplot.options(pvar, 'ytitle', pvar)
pytplot.tplot([var, pvar])